Automated PET-only quantification of amyloid deposition with adaptive template and empirically pre-defined ROI.

نویسندگان

  • G Akamatsu
  • Y Ikari
  • A Ohnishi
  • H Nishida
  • K Aita
  • M Sasaki
  • Y Yamamoto
  • M Senda
چکیده

Amyloid PET is useful for early and/or differential diagnosis of Alzheimer's disease (AD). Quantification of amyloid deposition using PET has been employed to improve diagnosis and to monitor AD therapy, particularly in research. Although MRI is often used for segmentation of gray matter and for spatial normalization into standard Montreal Neurological Institute (MNI) space where region-of-interest (ROI) template is defined, 3D MRI is not always available in clinical practice. The purpose of this study was to examine the feasibility of PET-only amyloid quantification with an adaptive template and a pre-defined standard ROI template that has been empirically generated from typical cases. A total of 68 subjects who underwent brain (11)C-PiB PET were examined. The (11)C-PiB images were non-linearly spatially normalized to the standard MNI T1 atlas using the same transformation parameters of MRI-based normalization. The automatic-anatomical-labeling-ROI (AAL-ROI) template was applied to the PET images. All voxel values were normalized by the mean value of cerebellar cortex to generate the SUVR-scaled images. Eleven typical positive images and eight typical negative images were normalized and averaged, respectively, and were used as the positive and negative template. Positive and negative masks which consist of voxels with SUVR  ⩾1.7 were extracted from both templates. Empirical PiB-prone ROI (EPP-ROI) was generated by subtracting the negative mask from the positive mask. The (11)C-PiB image of each subject was non-rigidly normalized to the positive and negative template, respectively, and the one with higher cross-correlation was adopted. The EPP-ROI was then inversely transformed to individual PET images. We evaluated differences of SUVR between standard MRI-based method and PET-only method. We additionally evaluated whether the PET-only method would correctly categorize (11)C-PiB scans as positive or negative. Significant correlation was observed between the SUVRs obtained with AAL-ROI and those with EPP-ROI when MRI-based normalization was used, the latter providing higher SUVR. When EPP-ROI was used, MRI-based method and PET-only method provided almost identical SUVR. All (11)C-PiB scans were correctly categorized into positive and negative using a cutoff value of 1.7 as compared to visual interpretation. The (11)C-PiB SUVR were 2.30  ±  0.24 and 1.25  ±  0.11 for the positive and negative images. PET-only amyloid quantification method with adaptive templates and EPP-ROI can provide accurate, robust and simple amyloid quantification without MRI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Analysis of PiB-PET with FreeSurfer ROIs

In vivo quantification of β-amyloid deposition using positron emission tomography is emerging as an important procedure for the early diagnosis of the Alzheimer's disease and is likely to play an important role in upcoming clinical trials of disease modifying agents. However, many groups use manually defined regions, which are non-standard across imaging centers. Analyses often are limited to a...

متن کامل

Reproducible Analysis of Rat Brain PET Studies Using an Additional [18F]NaF Scan and an MR-Based ROI Template

Background. An important step in the analysis of positron emission tomography (PET) studies of the brain is the definition of regions of interest (ROI). Image coregistration, ROI analysis, and quantification of brain PET data in small animals can be observer dependent. The purpose of this study was to investigate the feasibility of ROI analysis based on a standard MR template and an additional ...

متن کامل

Multimodal imaging brain connectivity analysis (MIBCA) toolbox: preliminary application to Alzheimer’s disease

Center for Neuropsychopharmacology, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK The Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox is a fully automated all-in-one connectivity analysis toolbox that offers both pre-processing, connectivity, and graph theory analysis of multimodal images such as anatomical, diffusion, and functional MRI,...

متن کامل

An MRI‐Based Atlas for Correlation of Imaging and Pathologic Findings in Alzheimer's Disease

BACKGROUND AND PURPOSE Pathologic diagnosis is the gold standard in evaluating imaging measures developed as biomarkers for pathologically defined disorders. A brain MRI atlas representing autopsy-sampled tissue can be used to directly compare imaging and pathology findings. Our objective was to develop a brain MRI atlas representing the cortical regions that are routinely sampled at autopsy fo...

متن کامل

Quantification of partial volume effects in planar imaging

Introduction: The limited resolution of the imaging system causes partial volume effects (PVEs). These results in spreading of image counts to the neighboring pixels. This phenomenon is called spill-out effect. This study aimed at quantifying PVEs using ImageJ. Methods:Technetium-99m solution of concentration of 74 kBq/ml was filled into spheres A, B<...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 61 15  شماره 

صفحات  -

تاریخ انتشار 2016